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ABSTRACT  

 

Cancer cells do not act autonomously. The interaction between cancer cells and other ‘normal’ 

cell types creates a tumor microenvironment conducive for the development, growth, and 

progression of the disease. One example is the macrophage, an immune cell that phagocytizes 

pathogens during infection and removes unwanted cellular debris during injury, but which also 

accumulates in cancerous tissue as so-called tumor-associated macrophages (TAMs). M1-like 

TAMs are pro-inflammatory, immunostimulatory, and may directly target and kill cancer cells. 

M2-like TAMs, in contrast, generate the growth factors that support cellular growth, 

angiogenesis, and metastasis, and have thus been deemed a desirable target for therapeutics. 

Vesicular stomatitis virus (VSV) is known for its natural ability to target cancer cells, but its 

effect on TAMs is unclear. Here we used common agonists to pre-polarize model THP-1 

monocytes into M0 (PMA), M1 (PMA, LPS, IFN-𝛾), or M2 (PMA, IL-4, IL-13) macrophages in 

order to measure their response to infection with a recombinant wild-type strain of VSV (rwt-

GFP) as well as an isogenic mutant strain (rM51R-M-GFP) that is nonvirulent in normal tissues. 

The ability of VSV to infect and replicate in monocytes and macrophages was determined by 

live cell imaging of the green fluorescent protein (GFP). Results indicated that monocytes (73% 

GFP-positive), M0 macrophages (23% GFP-positive), and M2 macrophages (36% GFP-positive) 

supported the replication of both viral strains. Monocytes and M0 macrophages, however, were 

slightly more sensitive to the M protein mutant strain of VSV while M2 macrophages were 

slightly more sensitive to the wild type strain. M1 macrophages, in contrast, were completely 

resistant to both viral strains; no cells were GFP-positive under any experimental condition. The 

viability of macrophages following infection with VSV, as determined by an MTT assay, 
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showed similar results to the replication experiments. Most importantly, M1 and M2 

macrophages were differentially susceptible to killing by rwt and rM51R-M viruses. Anti-tumor 

M1 macrophages were resistant to the cytotoxic properties of both viruses while tumor-

promoting M2 macrophages were more sensitive, with greatest sensitivity to the rwt strain (31% 

viability) at an MOI of 10. The greater susceptibility of M2 macrophages to oncolytic VSV 

strains suggests newfound benefits for anti-cancer virotherapies targeting pro-tumor, M2-like 

TAM populations.  
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INTRODUCTION 

 

Cancer Defined 

Cancer is a collection of related diseases in which certain cells of the body divide without 

stopping and then spread to surrounding tissues. Cancer is caused by mutations in the oncogenes 

and tumor suppressor genes that control basic cellular behaviors like division, motility, and even 

death. These mutations may be genetically predisposed or may arise sporadically from exposure 

to carcinogenic stimuli such as tobacco smoke or UV radiation. Once the initial tumor is formed, 

cancers can spread locally to surrounding tissues or systemically throughout the body in a 

process called metastasis.  

 

Cancer Treatment Modalities 

Primary tumors (e.g. breast and prostate cancer) often have defined and successful 

treatment regiments when identified at early stages. This includes the traditional cancer 

treatments of chemotherapy, radiation, and surgery. Widely used against malignant or rapidly 

invading cancers, cytotoxic chemotherapy drugs kill cancer cells, but commonly have severe side 

effects such as alopecia, gastrointestinal irritation, and depletion of red blood cells (Gerber, 

2008). Radiation, in contrast, uses high-energy x-rays or gamma rays to kill or shrink tumors and 

may be used in conjunction with chemotherapy and/or surgical intervention (Evans and 

Staffurth, 2017). Gaining in popularity are newer treatment modalities like hormonal therapy, 

immunotherapy, and targeted therapy. Hormone therapy is used prior to surgery or radiation in 

cancers of the breast or prostate tissue to reduce the size of the tumor or reduce the risk of 

recurrence (Abraham and Staffurth, 2016). Targeted therapy works to neutralize the signaling 
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pathways activated by oncogenes, including those involved in the uncontrolled proliferation of 

cancer cells (Scroff et al., 2018). Immune therapy refers to the stimulation of anti-tumor immune 

cells and is among one of the more exciting frontiers in cancer medicine (Khagi and Vlahovic, 

2017). Regardless of the techniques in use today, metastatic cancers generally remain 

noncompliant, and there remains a constant need for novel treatment options along with 

clarification of the multiple and widespread factors that regulate this particular aspect cancer 

progression. 

 

Oncolytic Virotherapies 

Oncolytic virotherapies are also gaining in popularity. During a viral infection, host 

machinery is often manipulated in such a way as to promote the assembly of new viral particles. 

This compromise in host cell function may lead to irreparable harm and even death in the host 

cell. Thus, injection of an oncolytic virus into a tumor can directly kill infected cancer cells. 

Moreover, viral replication in infected cancer cells amplifies the viral load in tumor tissue, 

spreading the infection tumor wide (Biederer et al., 2001). Oncolytic virotherapies also induce an 

anti-viral response in cancer cells. These ‘danger signals' secreted as cytokines stimulate a host 

immune response, which also can promote destruction of the tumor (Biederer et al., 2001). Many 

viruses are being tested in clinical trials, including measles, herpes simplex, Newcastle disease 

virus, retrovirus, adenovirus, and vesicular stomatitis virus (Liu et al., 2013; Buijs et al., 2018).  

 

Vesicular Stomatitis Virus 

Vesicular stomatitis virus (VSV) is an RNA virus in the family Rhabdoviridae 

(Balachandran and Barber, 2000; Westcott et al., 2013). The Rhabdoviridae family is comprised 
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of enveloped viruses with a distinctive bullet-shape. Their genomes consist of single stranded 

negative-sense RNA. VSV is a common virus in livestock and causes a mild fever and blister-

like lesions on the inside of the mouth, lips, nose, hooves, and udder (Buijs et al., 2015). 

Attachment to the host is initiated by viral glycoproteins and the virus enters the host cell via 

receptor-mediated endocytosis. Once inside the host, its genome is replicated, and progeny virus 

are assembled and released. One product is an RNA molecule that serves as a functional ligand 

for receptors that, when recognized, stimulates a type I interferon response in the host (Chávez-

Galán et al., 2015). In the recombinant wild-type strain of VSV (rwt), inhibition of the host anti-

viral response is achieved via the M protein. The M protein, encoded by one of 5 genes on the 

small VSV operon, blocks nuclear pores and thereby interferes with the ability of host mRNA to 

travel from the nucleus to the cytoplasm (Kopecky et al., 2001; Ahmed et al., 2010). It also 

inhibits all three host RNA polymerases (Kopecky et al., 2001). Thus, the M protein limits host 

gene expression, including interferon and interferon stimulated genes (ISGs) involved in host 

anti-viral defense (Westcott et al., 2013). It also has the effect of supporting viral replication by 

preferentially transcribing viral genes. A mutated VSV strain has been developed in which the M 

protein harbors a methionine to arginine substitution at the fifty-first amino acid (rM51R-M) 

(Ahmed et al., 2010; Redondo et al., 2015). Without the ability to inhibit host genome 

expression, this mutant strain is considered a safer, less virulent option for therapeutic use 

(Kopecky and Lyles, 2003). As an oncolytic therapy, VSV is used to induce autophagy in cancer 

cells. This leads to the presentation of tumor cell antigens and stimulation of an anti-tumor 

response by the immune system. Thus, the virus is able to directly kill cancer cells, but has the 

dual and equally important role of alerting the immune system to the presence of the tumor, and 

thereby inducing tumor cell death in an indirect manner (Bartlett et al., 2013). The virus can be 
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administered intravenously or intratumorally, alone or in conjunction with other cancer treatment 

modalities (Lun et al., 2006).  

 

Podosomes 

 Actin-rich cell structures that aid in motility and invasion are known as podosomes. 

These ventral surface protrusions aid in invasion via motility and degradation of the extracellular 

membrane (Blouw et al., 2008). While found in other ‘normal’ cell types such as osteoclasts and 

vascular smooth muscle cells, podosomes are also found in both cancer cells and all polarized 

macrophages (Blouw et al., 2008; Polzin, 2017). Proteins associated with the actin filaments in 

the podosomes are involved in cancer cell invasion and subsequent metastasis, which is why 

podosome expression is examined in this study.   

 

Macrophages 

One of the cell types that can recognize pathogenic intruders, including viruses, are 

macrophages. Macrophages are part of the innate immune system and in a healthy organism are 

charged with ridding the body of harmful pathogens or repairing damaged cells and tissues 

(Italiani and Boraschi, 2014). As phagocytes, macrophages can present foreign antigens to other 

immune cells. They also help initiate an inflammatory response to danger signals and thus 

amplify the overall immune response to infection. The macrophages that reside in tissues have 

differentiated from circulating monocytes of the blood, bone marrow, or spleen in response to 

local cytokines like colony-stimulating factors (CSF) and interleukins (IL) (Italiani and Boraschi, 

2014). Macrophages are assigned different names based on their resident tissue, including 

alveolar macrophages in the lung, osteoclasts in the bone, microglial cells in the central nervous 
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system, and Kupffer cells in the liver (Italiani and Boraschi, 2014). Resident macrophages are 

invasive. Their ability to move through tissues and to remodel the extracellular matrix is 

mediated by actin-rich protrusive structures along the ventral cell surface called podosomes 

(Burger et al., 2011). Podosomes are thus a well-known morphological marker of macrophages, 

though they are also made by other invasive cells (e.g. osteoclast and vascular smooth muscle 

cells), including the related invadopodia of cancer cells.   

 

M1 and M2 Macrophages 

Macrophages exhibit considerable plasticity and can exist among a wide range of 

phenotypes. At the two polar extremes are the classically activated M1 macrophages and the 

alternatively activated M2 macrophages (Italiani and Boraschi, 2014; Chávez-Galán et al., 2015).   

M1 macrophages respond to infections. For example, M1 macrophage polarization is 

stimulated by lipopolysaccharide (LPS), a bacterial membrane component in gram-negative 

bacteria, and by pro-inflammatory cytokines like tumor necrosis factor-a (TNF-a) or interferon-

g (IFN-g) (Italiani and Boraschi, 2014). M1 macrophages are recognized by the cytokines they 

secrete, like IL-1β, TNF-a, IL-12, and IL-18, as well as by their expression of cell surface 

protein markers like major histocompatibility complex class II (MHC-II), CD68, and the 

costimulatory molecules CD80 and CD86 (Chávez-Galán et al., 2015). Infectious diseases with 

intracellular pathogens such as M. tuberculosis (tuberculosis) and L. monocytogenes (listeriosis) 

also activate pro-inflammatory M1 macrophages (Chávez-Galán et al., 2015). M1 macrophages 

also play roles in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and 

inflammatory bowel disease. To the extent that mutations may create alterations in the surface of 
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cancerous cells, M1 macrophages may also recognize them as foreign, and hence M1 

macrophages have an anti-tumor phenotype.  

While they are responsive to parasites, alternatively-activated M2 macrophages are 

morphologically and phenotypically distinct from their M1 counterparts. M2 macrophages 

promote angiogenesis, tissue remodeling, and growth during wound healing. They are stimulated 

by cytokines like CSF-1, IL-4, IL-10, IL-13, and transforming growth factor-β (TGF-β). Their 

expression of the scavenger receptor A CD204 and the mannose receptor CD206 uniquely 

distinguishes M2 macrophages from other macrophage subtypes (Chávez-Galán et al., 2015). M2 

macrophages are considered pro-tumor in the sense that they are able to support new vasculature 

and secrete growth-promoting cytokines. There is also evidence that M2 macrophages combine 

with endothelial and cancer cells to form a triad, which marks the sites of intravasation into 

blood vessels as an early step in metastasis (Robinson et al., 2009). 

 

Tumor-Associated Macrophages 

The tumor microenvironment (TME) is the tissue surrounding a tumor (Yang et al., 

2015). It includes the blood vessels that supply oxygen and nutrients, as well as access to the 

circulation for tumor metastasis (Yang et al., 2015). It also includes neighboring stromal cells 

like fibroblasts, vascular endothelial cells, immune cells, adipocytes, and mesenchymal stem 

cells, as well as the cytokines they secrete. Macrophages are also present and functional within 

cancerous tissue where they sometimes can encompass as much as 50% of a tumor’s mass 

(Vinogradov et al., 2014). As an internal wound site, the phenotype of these so-called tumor-

associated macrophages (TAMs) often lies closest to the M2 end of the macrophage spectrum. 

High incidence of M2-like TAMs promotes tumor vascularization and secretes growth factors 
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that support tumor growth and metastasis. M2-like TAMs are thus associated with poor cancer 

patient prognosis (Lin et al., 2006; Bailey et al., 2007).  

 

Hypothesis 

In theory, inhibiton of the growth-promoting TME might reduce inflammation and/or aid 

the targeting of cancerous cells (Chávez-Galán et al., 2015). Thus, the goal of this study was to 

determine the effect of oncolytic VSV on macrophages in the tumor microenvironment. As a 

known oncolytic agent, the impact of VSV on pro-tumor M2 or anti-tumor M1 macrophages is 

unclear. Conflicting data regarding the effects of oncolytic virotherapy on macrophages in the 

tumor microenvironment poses further questions (Passaro et al., 2016; Tan et al., 2016; Liu et al., 

2013). Is one macrophage phenotype preferentially killed over another? Do they mount different 

viral defenses? Does viral infection promote a phenotypic switch from M2 to M1 macrophages? 

Here the specific focus is on delineating techniques for the proper polarization of macrophages in 

vitro as well as an assessment of the susceptibility of M1 and M2 macrophages to replication by 

and cytotoxicity to VSV. 
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MATERIALS AND METHODS 

 

Virus Stocks 

Recombinant wild-type (rwt) and matrix protein mutant (rM51R-M) strains of vesicular 

stomatitis virus (VSV), both with or without insertions of the green fluorescent protein (GFP) 

gene, were a generous gift from Dr. Doug Lyles from the Wake Forest University School of 

Medicine (Winston Salem, NC). Viral stocks were grown in baby hamster kidney (BHK) 

fibroblasts using established procedures (Lyles et al., 1996). Briefly, BHK cells were infected 

using original recombinant viral stock. After a 24-hour incubation, supernatant media containing 

virus was harvested, serially diluted, and then applied to 80% confluent, non-infected BHK cells 

in a 6-well plate overlaid with 1% agar. After 48 hours, the cells were fixed with 3% 

formaldehyde/PBS for 3 hours. The agar overlay was then removed and crystal violet was added 

to identify plaques. The plaque assay was used to identify the number of plaque-forming units 

(pfu) in the viral samples. Titered virus in this study was kindly prepared by Ms. Megan Polzin. 

 

Cell Culture 

The nonadherent THP-1 leukemia cell line, used to model monocyte/macrophage 

behavior, was maintained at 37℃ and 5% CO2 in RPMI-1640 media (Sigma-Aldrich). This 

media was formulated with 0.3g/L L-glutamine and sodium bicarbonate and supplemented with 

10% (v/v) fetal bovine serum (Sigma-Aldrich), 1% penicillin/streptomycin (Corning), 1% MEM 

vitamins (Sigma-Aldrich), 10mM HEPES (pH 7), and 0.05mM 2-mercaptoethanol (MP 

Biomedicals). Cells were subcultured every 2 to 3 days so that the density stayed between 2x105 

and 1x106 cells/mL.  
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Macrophage Polarization 

THP-1 monocytes were seeded into a 96-well plate at a concentration of 25,000 cells per 

well, and then differentiated into adherent macrophages with 25nM PMA (Sigma-Aldrich). After 

24 hours, the media was replaced with fresh media containing polarization factors in conjunction 

with PMA for an additional 48 hours. M0 macrophages were made with a treatment of 25nM 

PMA alone; M1 macrophages were made with a treatment of 25nM PMA, 20ng/mL LPS 

(L5418; Sigma-Aldrich), and 20ng/mL IFN-g (570202; BioLegend); and M2 macrophages were 

made with a treatment of 25nM PMA, 20ng/mL IL-4 (574002; BioLegend), and 20ng/mL IL-13 

(571102; BioLegend). Macrophage polarization was verified by morphology and by the 

expression of subtype specific markers (Polzin, 2017). 

 
 
Figure 1. Polarization protocol of THP-1 monocytes. Model THP-1 monocytes were first 
differentiated into macrophages using the phorbol ester PMA for 24 hours. Continued PMA 
treatment for an additional 48 hours produced M0 macrophages or the PMA was supplemented 
with LPS and IFN-𝛾 or IL-4 and IL-13 to produce polarized M1 or M2 macrophages, 
respectively. 
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Fluorescent Microscopy 

THP-1 monocytes were seeded into a 6-well plate containing two sterile glass coverslips 

(Microscope Cover Glasses, 12mm; Carolina Biological Supply) at a concentration of 5 x 105 

cells per well, and then polarized to macrophages using the protocol above. Macrophages were 

fixed on the slides using 0.3% formaldehyde (Electron Microscopy Sciences)/PBS for 10 

minutes, permeabilized in 0.4% Triton-X-100/PBS for 10 minutes, and stained with Texas Red-

conjugated phalloidin (1:200; Molecular Probes) in 5% donkey serum/PBS. After several washes 

in PBS, the cover glasses were mounted onto glass slides using a small droplet of ProLong® 

Gold Antifade with DAPI (8961S; Cell Signaling). Random representative images of each 

macrophage subtype were obtained using an Olympus BX51 inverted fluorescence and phase 

contrast microscope equipped with a Retiga EXi Fast1394 camera using the 40X and 100X 

objectives. Images were modified for contrast and brightness using Q-Imaging and Adobe 

Photoshop software.  

 

Viral Replication Assay 

To monitor VSV replication, THP-1 monocytes were seeded into 6-well plates at a 

concentration of 5 x 105 cells per well, and then polarized to macrophages using the protocol 

above. Both monocytes and M0, M1, and M2 macrophages were infected with the rwt-GFP or 

rM51R-GFP mutant strains of VSV at multiplicities of infection (MOIs) of 1 or 10 pfu/cell for 

16 hours. Active replication of the virus was indicated by positive green fluorescent protein 

fluorescence in the cells. Live fluorescent microscopy images were obtained using an Olympus 

IX81 microscope at 20X magnification equipped with a DP71 color camera. Random images 
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were edited with MicroSuite B3 Biological Suite software, and the mean percentage of GFP-

positive cells calculated from three independent experiments.  

 

Cell Viability Assay 

THP-1 monocytes were seeded in triplicate into a 96-well plate at a concentration of 

25,000 cells per well, and then polarized to macrophages using the protocol above. Both 

monocytes and M0, M1, and M2 macrophage were infected with the rwt or rM51R-M mutant 

strains of VSV at MOIs of 1 or 10 pfu/cell for 16 or 32 hours. At endpoint the MTT Reagent (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was applied to the cells according 

to manufacturer instructions (Cell Proliferation Kit, Roche Diagnostics; TACS MTT Cell 

Proliferation Assay, Trevigen) with viability based on the ability of metabolically active cells to 

produce purple-colored formazan. Cells were solubilized after 5 hours and the absorbance of 

each well was recorded with a VersaMax tunable microplate reader (89429-538) using SoftMax 

Pro 5.4.1 software at a wavelength of 570nm. Absorbance values from three independent 

experiments were normalized against mock-infected wells for each experimental condition.   
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RESULTS 

 

Macrophage Polarization  
 
 THP-1 cells are widely used as a model of precursor monocyte differentiation into mature 

macrophages (Bosshard et al., 2016). When properly maintained, THP-1 monocytes are free-

floating, spherically-shaped cells, but treatment with the phorbol ester PMA induces rapid cell 

adhesion and the formation of punctate actin structures known as podosomes (Burger et al., 

2011). While this macrophage differentiation phenotype is reproducible, ambiguities remain as 

to a protocol that most successfully polarizes macrophages into M1 and M2 phenotypes 

(Debinski et al., 2014; Chanput et al., 2015). Classically activated anti-tumor M1 macrophages 

are noted for their production of pro-inflammatory cytokines and are induced by the bacterial 

outer membrane component LPS and the stress-inducing molecule IFN-g. Alternatively activated 

pro-tumor M2 macrophages play roles in angiogenesis and tissue remodeling and are induced by 

IL-4 and IL-13 (Chávez-Galán et al., 2015). Based on previously published polarization 

methods, various techniques were tested to determine which provided the most robust 

phenotypic differences.  

We first confirmed morphological differences by mounting monocytes and macrophage 

subtypes on glass coverslips for examination by phase contrast and fluorescent microscopy. As 

the THP-1 monocyte cell line is non-adherent, monocytes appear round and free-floating in 

phase contrast images (Figure 2A). When stained for F-actin to show the cytoskeletal 

architecture, monocytes did not have the defined, punctate structures known as podosomes that 

can be readily seen in the M0, M1, and M2 macrophage phenotypes (compare Figure 2B with 

Figures 2D, 2F, and 2H).  M0 macrophages, as a non-polarized macrophage subtype, showed 
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remarkable morphological similarities to M2 macrophages (compare Figures 2C and 2G). Both 

were slightly larger and more flattened than THP-1 monocytes. M1 macrophages, in contrast, 

had more diverse, elongated morphologies based on both phase contrast and fluorescent 

microscopy images (Figures 2E and 2F). 

 

Figure 2. Phase contrast and fluorescent microscopy images denote morphology. THP-1 
monocytes were pre-polarized into M0, M1, and M2 macrophages. Phase contrast images appear 
on the left while fluorescent microscopy images appear on the right (red, F-actin; blue, nuclei). 
(A,B) Monocytes, (C,D) M0 macrophages, (E,F) M1 macrophages, (G,H) M2 macrophages. 
Images A, C, G, and G were provided by Dalton Sizemore. Image E was provided by Megan 
Polzin. 
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As indicated earlier, all macrophage subtypes made punctate F-actin podosome structures 

(Figures 2D, 2F, and 2H). While podosome multiplicity was the focus of another study (Polzin, 

2017), their presence here noted by the punctate staining pattern of F-actin helped confirm the 

desired differentiation of monocytes to macrophages in the THP-1 cell line. This, along with the 

morphologies of the macrophage subtypes, provided a distinct visual cue that helped verify their 

proper polarization. Based on the robust responses of THP-1 cells seen here, the polarization 

protocol involving the addition of PMA, its removal from the media after 24 hours, and then the 

re-addition of PMA in conjunction with polarization factors for an additional 48 hours was 

chosen for all future experiments in this study.    

  

VSV Replication in Monocytes and Polarized Macrophage Populations 

Oncolytic virotherapies like VSV are known for their selective cytotoxicity towards 

cancer cells. However, as the tumor microenvironment is home to many other cell types, we 

sought to determine whether VSV might have a broader cytotoxic profile, focusing this study on 

tumor associated macrophage populations. Here we used the THP-1 monocytic leukemia cell 

line as a surrogate for macrophages as they are easily cultured and can be polarized to specific 

phenotypic profiles, including putative anti-tumor M1 and pro-tumor M2 macrophages (Figure 

2). Monocytes and pre-polarized macrophages were each assayed for their ability to become 

infected with two forms of VSV:  a recombinant wild-type strain (rwt) and an M protein mutant 

strain (rM51R-M) that does not diminish the host response to VSV infection. Both strains 

contained a GFP insertion such that any cell that appeared green by fluorescent microscopy was 

supporting VSV replication.  
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Figure 3. Differential susceptibility of THP-1 monocyte and macrophage populations to 
VSV replication. THP-1 monocytes and M0, M1, and M2 macrophages were infected for 16 
hours with either wild-type (rwt-GFP) or M protein mutant (rM51R-M-GFP) strains of VSV at 
multiplicities of infection of 1 and 10 for 16 hours. Replication was based on live cell imaging by 
fluorescent microscopy. Cells containing actively replicating virus appear green in the images. 
Images provided by Megan Polzin (Polzin, 2017). 
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M0 and M2 macrophages exhibited results that were somewhere in between the sensitive 

monocytes and resistant M1 macrophages. Focusing on the M2 macrophages, replication by the 

rwt virus occurred in up to 36% of cells at an MOI of 10, dropping to 22% of cells when infected 

with rM51R-M at an MOI of 10 (Figure 3).  The data suggest that monocyte and M2 macrophage 

populations may be sensitive to the cytotoxic properties of VSV, while M1 macrophages may 

not be. 

 

Monocyte and Macrophage Viability in Response to VSV Infection  

To determine the relative cytotoxicity of VSV towards monocyte/macrophage 

populations, THP-1 monocytes and M0, M1, and M2 THP-1 macrophages were infected with 

either the rwt or rM51R-M mutant strains of VSV and tested for their viability by MTT assay 16 

and 32 hours later. A dose-dependent decrease in cell viability was noted for monocytes, M0 

macrophages, and M2 macrophages, with the monocytes being the most affected. For example, 

the rwt strain of VSV decreased monocyte viability to 61.9% (MOI 1) and 37.8% (MOI 10) of 

mock infection levels, while the rM51R-M mutant strain decreased viability to 77.1% (MOI 1) 

and 55.4% (MOI 10) (Figure 4A). This can be compared favorably to non-polarized M0 

macrophages whose viability in response to the rwt VSV strain decreased to 75.6% (MO1 1) and 

58.2% (MOI 10) of mock infection levels, whereas the mutant strain decreased M0 macrophage 

viability to a slightly lesser degree of 71.9% (MOI 1) and 55.3% (MOI 10) (Figure 4B).  

Interestingly, pro-tumor M2 macrophages also saw significantly reduced cell viability 

relative to mock infections, and to levels comparable to the M0 macrophages (Figure 4D).  
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Figure 4. Percent viability of monocytes and macrophages following a 16-hour VSV 
infection.  THP-1 monocytes (A) and pre-polarized M0 (B), M1 (C), and M2 (D) macrophages 
were infected for 16 hours with either wild type (rwt) or M protein mutant (rM51R-M) strains of 
VSV at MOIs of 1 and 10.  Percent viability was based on an MTT assay and is recorded relative 
to mock infections. *, p<0.05; **, p<0.01; ***, p<0.001 (n=3).  
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(MOI 1) and 58.2% (MOI 10). As with the monocytes and M0 macrophages, there was always a 

statistical significance increase in cytotoxicity by both viral strains between MOIs of 1 and 10, 

indicating an ability to decrease viability when virus is applied at higher concentrations. In 

addition, the wild type strain of VSV tended to reduce cell viability more than the M protein 

mutant strain. 

M1 macrophages were uniquely different in their response to viral infection. Regardless 

of strain or multiplicity of infection, M1 THP-1 macrophages were resistant to viral infections 

and did not to succumb to its cytotoxicity in the way that monocytes, M0 macrophages, and M2 

macrophages did (Figure 4C). Indeed, no significant cell death was recorded under any of these 

standard experimental conditions. This was consistent to the extent of replication observed in M1 

macrophages after a 16-hour infection (Figure 3). Thus, putative anti-tumor M1 macrophages 

appear less susceptible to the cytotoxic properties of VSV.   

 

Viability after a 32-Hour VSV Infection 

In order to further explore the sensitivity of M2 macrophages to VSV as well as the 

ability of M1 macrophages to remain resistant to viral infection, the viability of monocytes and 

M0, M1, and M2 macrophages was also investigated as before, but after a 32-hour infection. The 

resulting trends appeared similar to those from the 16-hour VSV infection, but with more 

extensive cytotoxicities. For THP-1 monocytes viability decreased to 33.8% (MOI 1) and 23.2% 

(MOI 10) of mock infections with the rwt strain, and to 36.8% (MOI 1) and 30.7% (MOI 10) 

with the rM51R-M strain (Figure 5A).  
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Figure 5. Percent viability of monocytes and macrophages following VSV infection.  THP-1 
monocytes (A) and pre-polarized M0 (B), M1 (C), and M2 (D) macrophages were infected for 
32 hours with either wild type (rwt) or M protein mutant (rM51R-M) strains of VSV at MOIs of 
1 and 10.  Percent viability was based on an MTT assay and is recorded relative to mock 
infections. *, p<0.05; **, p<0.01; ***, p<0.001 (n=3).  
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the rwt strain (M0, 42.9% of mock infections; M2, 31.3% of mock infection) (Figures 5B and 

5D). In support of previous data from the 16-hour VSV infection, M1 THP-1 macrophages 

remained resistant to both strains and at both dosages, even after 32 hours. The lowest viability 

was in response to the M protein mutant virus at an MOI of 10 (89% of mock), but this was not 

statistically significant. Thus, putative anti-tumor M1 macrophages maintained their antiviral 

activity despite longer exposure to the virus, while monocytes and M0 and M2 macrophages 

remained highly susceptible to cell death.  
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DISCUSSION 

 

Summary of Results 

VSV is known for its oncolytic properties against cancer cell lines (Balachandran et al., 

2000). However, the effects of VSV on polarized macrophage populations remains less clear. As 

effectors of an immunogenic response and potential drivers of tumor progression (Lichty et al., 

2004; Fernandez et al., 2002; Berkey et al., 2017), we believed that the effects of oncolytic 

viruses on tumor-associated macrophages should be further studied to better elucidate the 

potential benefits or drawbacks of virotherapies. To that end, we developed an in vitro model 

system to evaluate the effects of VSV on putative TAM populations. First, THP-1 monocytes 

could be successfully polarized into distinct M1 and M2 macrophage phenotypes. This was 

superficially confirmed by the variable morphologies exhibited by monocytes and macrophages 

under various polarization regiments as well as podosome production in the macrophage 

subtypes (Figure 2). Validation came later by determining the expression profiles of known M1 

(pSTAT1) and M2 (CD204) markers (Polzin, 2017). Only M1 macrophages expressed the 

activated (phosphorylated) form of the transcriptional activator protein STAT1. Only M0 and 

M2 macrophages expressed the cell surface scavenger receptor CD204. Second, different THP-1 

macrophages subtypes exhibited differential susceptibilities to VSV infection as measured by the 

ability of the virus to replicate in and kill the cells (Figures 3, 4, and 5). Most noteworthy was the 

remarkably complete resistance of anti-tumor M1 macrophages to VSV infection, and the much 

greater sensitivity of the pro-tumor M2 macrophages in which over a third of the cells supported 

replication of VSV and over two-thirds of the cells eventually died. Such data suggest that the 
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positive benefits of VSV as an oncolytic virotherapy might include the ability to target and kill 

tumor promoting M2 macrophage populations within the tumor microenvironment. 

 

Validation of THP-1 Macrophage Polarization 

Since much depended on a valid macrophage polarization procedure in this study, the 

earliest work on this project involved testing various protocols from the literature (Debinski et 

al., 2014; Chanput et al., 2015; Genin et al., 2015; Voloshyna et al., 2014). While there are other 

published procedures, we chose to adapt a protocol from the Debinski laboratory group at Wake 

Forest University. Obvious morphological distinctions demonstrated phenotypic differences 

between the macrophage subtypes. M1 THP-1 macrophages appeared elongated and spread out, 

while M2 THP-1 macrophages appeared rounder, and larger, and had a tendency to clump 

together (Figure 2). Images of M0, M1, and M2 macrophages all contained punctate actin 

structures known as podosomes while monocytes lacked these structures, all of which is 

consistent with previous data (Polzin, 2017). M0 and M2 macrophages also appeared to contain 

more podosomes per cell in comparison to M1 macrophages, which further validates previous 

observations about THP-1 polarization into divergent macrophage phenotypes (Polzin, 2017).  

A more definitive indication of phenotype differentiation was determined by the 

expression profiles of classic macrophage markers. THP-1 macrophages exposed to PMA, IFN-

g, and LPS saw increased expression of the M1 marker pSTAT1, a transcription factor in the 

interferon signaling pathway (Polzin, 2017). When exposed to IFN-g from other immune cells 

like helper and cytotoxic T cells, or natural killer cells, a signaling cascade is activated in 

macrophages that transcribes M1 polarization and antiviral genes (Shuai et al., 1993; Matsumoto 

et al., 1999). Our preliminary analysis of M1 macrophages has also shown an upregulation of the 
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costimulatory molecule CD80 (Chávez-Galán et al., 2015). In contrast, THP-1 macrophages 

exposed to PMA, IL-4, and IL-13 saw increased expression of the M2 marker CD204 (Polzin, 

2017), which is consistent with a previous study (Debinski et al., 2014). CD204, or scavenger 

receptor A, is a common surface marker protein on M2 macrophages, and in the context of the 

tumor microenvironment is associated with angiogenesis and immunosuppression and hence a 

poor cancer patient prognosis (Miyasoto et al., 2017; Kelley et al., 2014). Future studies aim to 

confirm previously reported cytokine secretions by M1 and M2 macrophages as measured by 

ELISA (Chávez-Galán et al., 2015). In particular, the M1 markers TNFa, IL-6, and IFN-a are all 

being studied, both before and after infection with VSV. Aside from these continued 

investigations, the collective data obtained to date reasonably confirms polarization of THP-1 

cells into M1 and M2-like phenotypes, thus making this cell line a reasonable model for 

assessing the effects of VSV on macrophage viability.  

 

The Differential Susceptibility of THP-1 Monocytes and Macrophages to VSV Infection 

THP-1 monocytes, M0 macrophages, and M2 macrophages were all susceptible to 

infection and replication by recombinant VSV, while M1 macrophages maintained resistance to 

the virus. These results were generally true for both the wild-type (rwt) and M protein mutant 

(rM51R-M) strains of VSV and at both of the studied concentrations. Monocytes were the most 

sensitive to VSV replication as 65% (rwt) and 73% (rM51R-M) of monocytes were GFP-positive 

after 16 hours at an MOI of 10 (Figure 3). Based on an MTT assay, VSV infections also led to 

high THP-1 monocyte cytotoxicities as the viability of infected monocytes ranged from 21% 

(rwt) to 30% (rM51R-M) of mock infections after 32 hours at an MOI of 10 (Figure 5). On the 

opposite end of the spectrum were the M1 macrophages. Live fluorescent microscopy imaging of 
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GFP as a measure of viral replication indicated complete resistance at 16 hours post-infection 

(Figure 3). That is, no GFP-positive cells were observed. Moreover, the minimal cytotoxic 

properties of VSV, based on the 81% viability relative to mock infected cells, were not 

statistically significant thus making M1 macrophages one of the more resistant cell types to VSV 

infection studied to date (Figures 4 and 5). M0 and M2 macrophages were, in contrast, 

somewhere in between the responses of monocytes and M1 macrophages. Susceptibility to VSV 

replication in the M0 macrophages was greatest in response to the rM51R-M mutant strain of 

VSV (23% GFP-positive) while cytotoxicity was greatest in response to the rwt strain at 32 

hours post-infection (34% of mock viability) (Figures 3 and 5). For M2 macrophages, both 

replication (36% GFP-positive) and cytotoxicity (29% of mock viability) were greatest in 

response to the rwt strain (Figures 3 and 5). 

 

Extending the Value of VSV-based Therapies to Susceptible M2 THP-1 Macrophage Populations 

M2 macrophages are polarized using the phorbol ester PMA. This activates protein 

kinase C signaling, including two activators of JAK/STAT signaling called IL-4 and IL-13 

(Daigneault et al., 2010; Chávez-Galán et al., 2015; Gandhi et al., 2016). While these cytokines 

stimulate polarization to M2 macrophages, they do not initiate any kind of antiviral response, 

leaving M2 macrophages (as well as monocytes and M0 macrophages) susceptible to VSV 

infection. M2 macrophages secrete growth factors that promote cancer cell proliferation and 

angiogenesis, and their podosome-associated invasive behavior is known to stimulate tumor 

metastasis (Alblazi et al., 2015). Their high susceptibility to VSV infection thus poses potential 

benefits for the cancer patient by broadening the targets VSV can hit within the tumor 

microenvironment.  
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The general susceptibility of M0 and M2 macrophages to VSV infection and cytotoxicity 

relates, in part, to the strain being studied. For example, M2 macrophages were most susceptible 

to the rwt strain of VSV in this study. The rwt strain of VSV has an intact M protein, which aids 

in the shutdown of host genome expression so that the virus is able to more effectively infect 

cells and replicate its viral genome. This contrasts with the rM51R-M mutant strain of VSV, 

which renders the M protein defective and disables the shutdown of host genome expression by 

the virus. IFN and interferon-stimulated genes (ISGs), which are thus still expressed, protect the 

cell against VSV infection (Ahmed et al., 2010). The M protein mutant strain of VSV was 

developed as a less virulent and thereby safer virus as it still kills cancer cells but has a 

somewhat diminished ability to target normal cell populations. As a nonvirulent form of VSV, a 

similar potency by the M protein mutant virus to the wild-type virus would prove beneficial for 

oncolytic virotherapies, which is why both strains were included in this study. Results indicate a 

more pronounced drop in viability when M2 macrophages were exposed to rwt (29% of mock 

viability), but there was still significant cell death in response to r-M51R-M (47% of mock 

viability). Thus, there is utility in the ability of both viral strains to target tumor-promoting M2 

macrophage populations while anti-tumor M1 macrophage populations retained resistance to 

both strains (Figures 4 and 5). This suggests a further benefit of using the M protein mutant VSV 

strain in that it maintains some efficacy against M2 macrophages despite the lack of ability to 

shut down host genome expression. 

In addition to studies of cytotoxicity, the Ahmed-Seals labs are also exploring ways by 

which VSV can target M2 macrophage populations. One possibility lies in the ability of VSV to 

disarm the tumor-promoting functions of M2 macrophages. This refers to the podosome 

machinery of M1 and M2 macrophages. The Ahmed-Seals lab is currently investigating the 
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functions of macrophage podosomes within the tumor microenvironment, as macrophages are 

known to associate with tumor cells during intravasation and thus the metastatic spread of cancer 

to distant anatomic sites (Robinson et al., 2009). Based on recent data, all macrophages (M0, 

M1, and M2) are found to possess podosomes but at varying multiplicities. M1 macrophages 

produce the least with approximately 50 podosomes per cell while M2 (90 podosomes per cell) 

and M0 (120 podosomes per cell) macrophages produce much more (Polzin, 2017). When 

infected with VSV, surviving M2 macrophages experience a marked and statistically significant 

reduction in podosome multiplicity, even in the cells that were not directly replicating the virus 

(Polzin, 2017). Beyond podosome development, we hope to elucidate podosome function in 

TAMs by examining the matrix degradation ability of both M1 and M2 macrophages with and 

without exposure to VSV. Those experiments are currently in progress. If M2 macrophages can 

be selectively disarmed of their podosome structures, then the tumor-promoting invasive 

function of M2 macrophages may be another benefit of a VSV-based oncolytic virotherapy.  A 

second possible implication of VSV infection is a phenotypic switch from an M2-like to M1-like 

phenotype in surviving macrophages. After infection with the M protein mutant strain of VSV, 

we have observed an upregulation of the M1 marker pSTAT1 in M2 macrophages (Polzin, 

2017). This suggests a possible phenotypic switch that would reduce the functional numbers of 

pro-tumor M2 macrophages and increase the functional number of anti-tumor M1 macrophages, 

both of which could provide a benefit to the cancer patient.  

 

Primed Antiviral Resistance in M1 THP-1 Macrophages 

The M1 macrophages demonstrated remarkable resistance to VSV infection. We believe 

that this is likely the result of pre-activated type I IFN signaling in these cells. By polarizing 
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THP-1 cells with the bacterial outer membrane component LPS and the stress-inducing molecule 

IFN-g, the resulting M1 macrophages are naturally primed for infections through stimulation of 

an antiviral interferon response (Sadler and Williams, 2008). These cells become alerted via the 

binding of type I IFN ligands to the IFNAR1 and IFNAR2 receptor complex at the cell surface 

(Sadler and Williams, 2008). This begins a signaling cascade leading to the activation of 

transcription factors like phosphorylated signal transducers and activators of transcription 

(STATs; e.g. pSTAT1) that in turn upregulate antiviral genes. These effector genes include Mx 

GTPase, ribonuclease L, and protein kinase R, and serve to protect cells like M1 macrophages 

against viral replication. In mouse knockout studies, these effector proteins are known to block 

transcription, degrade viral RNA, inhibit translation, and modify proteins to downregulate all 

steps of viral replication (Sadler and Williams, 2008). Thus, when M1 macrophages are infected 

with VSV, they are already primed to resist an infection. In the context of the tumor 

microenvironment, this would mean that anti-tumor M1 macrophages might remain viable while 

M2 macrophages succumb to replication of VSV with subsequent cell death.  

 

Considerations on the Susceptibility of THP-1 Monocytes to VSV Infection 

As monocytes were the most sensitive to viral replication and death by VSV, concerns 

could be raised as to the impact of VSV as an oncolytic virotherapy on precursor monocytes. If 

injected intratumorally, rwt or rM51R-M virus might not be expected to have a wide-scale 

impact on the primary monocytic population, as they circulate in the blood throughout the body. 

However, if applied systemically (e.g. intravenously), VSV may significantly impact the larger 

monocyte population. High monocytic susceptibility lends itself to a high death rate when 

exposed to VSV, in which case the monocytes would be eradicated before getting a chance to 
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differentiate into either anti-tumor M1 or pro-tumor M2 macrophage subtypes. Such a therapy 

might also diminish the number of monocytes and macrophages systemically, and quite 

possibility compromise host immunity in general. Clearly, future studies, particularly those being 

done in vivo, need to consider whether these in vitro observations still prevail and whether there 

are broad impacts of such a therapy across the host immune system.   

 

Considerations on the THP-1 Model of TAM Activities 

Another important consideration in this study is the use of THP-1 monocytes as the 

model system. THP-1 is actually a cell line derived from a one-year-old monocytic leukemia 

patient (Tsychiya et al., 1980). They are neither primary monocytes derived directly from the 

peripheral blood or a macrophage derived from the peritoneum or bone marrow, which are two 

common techniques for acquiring primary monocyte/macrophage populations (Chanput et al., 

2014). Moreover, these cells are artificially stimulated into macrophages, treated directly with 

polarizing agonists instead of exposed to infection, wounding, or cancerous cells. They may 

therefore produce different results from experiments using primary cells when co-cultured with 

cancer cell lines or exposed to virus. In fact, THP-1 monocytes are known to be less reactive to 

polarization factors such as LPS than peripheral blood-derived monocytes (Bosshart and 

Heinzelmann, 2016). Results conducted with the THP-1 cell line should ideally be confirmed 

with studies using THP-1/cancer cell co-cultures, primary human peripheral blood monocytes, or 

TAMs studied in vivo. Indeed, ongoing experiments are now being conducted in the Ahmed-

Seals labs on a simulated tumor microenvironment created by the co-culture of THP-1 

monocytes and macrophages with breast cancer cell lines. Cytokine secretion by co-cultured 

THP-1 monocytes and macrophages is being measured to detect changes in the immunogenic 
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response of the cells within this simulated tumor microenvironment with and without infection 

by VSV. While the THP-1 monocytic cell line is not a perfect model, the relative ease of cell line 

maintenance and low cost more than makes up for any undesirable properties (Tedesco et al., 

2018). Indeed, monocytic cell lines (e.g. THP-1, U937) are commonly employed for the study of 

many macrophage-associated activities (Chanput et al., 2015).  

 

VSV-based Oncolytic Virotherapies 

VSV is an advantageous and convenient type of cancer therapy. The small genome is 

easily manipulated and produces high viral titers in a wide range of cell types. Intracytoplasmic 

replication presents low risk of integration into the host genome, and there is no pre-existing 

immunity found in humans against this virus (Buijs et al., 2015). In vivo studies of VSV using 

dogs and monkeys have shown promising results as anti-cancer agents (Buijs et al., 2015). Phase 

I clinical trials are ongoing (Buijs et al., 2015). VSV is also not the only virus being studied in 

clinical trials for its oncolytic properties; others include the Newcastle disease virus (NDV), 

measles virus, herpes simplex virus, and many others (Buijs et al., 2015). Intratumoral 

application of oncolytic viruses are currently being tested, while promising results have also been 

seen following the systemic application of VSV (Ding et al., 2018). 

An intratumoral or systemic treatment with VSV would be expected to lead to infection 

of cancer cells with considerable cytotoxic effects. The death of cancer cells would presumably 

lead to the expression of tumor antigens on the surface of phagocytic cell types and the 

stimulation of a long-term immune-based response to the cancer as well. Here we suggest that 

pro-tumor M2 macrophages may also be a part of the casualties of virus treatment, and thus 

offers another potential benefit for the cancer patient. However, much work remains as to 
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whether these initial observations seen in vitro yield any efficacy in more realistic co-culture 

experiments with cancer cells or in mouse models of the disease. 
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